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Abstract. We report on analytical calculations for a 4f coherent imaging system in presence of a phase
object at the entry of the set-up. We give the results of the optimized parameters to be used in this system
so as to increase the sensitivity of the measurement of the nonlinear refraction coefficient. Analytical and
previously reported simulated image profiles are compared here. Our study also gives the limits of the
nonlinear imaging technique with a phase object for relatively high nonlinear phase shifts.

PACS. 42.65.-k Nonlinear optics – 42.30.Kq Fourier optics

1 Introduction

Recently a nonlinear-imaging technique with phase-object
(NIT-PO) at the entry of a 4f coherent imaging system
to characterize the value of the nonlinear refractive in-
dex (n2) of materials placed in the Fourier plane of the
set-up [1] was reported. The Fraunhofer diffracted image
intensity profile was studied at the output plane (CCD
camera) of the optical system. The self-diffracted spec-
trum on the spatial filter (phase and/or amplitude cre-
ated by the incident spectrum intensity into the nonlin-
ear material) gives rise to changes into the transmitted
intensity at the image plane. The experimental acquisi-
tions were fitted by a simple theoretical model based on
Fourier optics to obtain the nonlinear coefficient. In this
method, the optical alignment is easy and no scanning of
the sample is needed unlike in Z-scan method [2]. More-
over, this technique allows shot-by-shot measurements of
n2 and thus the kinetics of photo-induced effects can be
studied [3]. Furthermore, it is possible to characterize n2

in presence of nonlinear absorption and to obtain a sig-
nal that is approximately due to pure nonlinear dephas-
ing using two intense laser shot in the material [4]. This
can be done by subtracting the images obtained with and
without the phase object (PO), both taken in the nonlin-
ear regime. However, as no analytical solution was readily
available, up to now, to characterize the field amplitude in
the Fourier plane when a phase object is centered at the
entry of the system, the beam was propagated from the
object plane to the image plane using the Fresnel diffrac-
tion integrals [4].
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In this paper we develop an analytical solution for the
field at the focus of a 4f system, at first for a better com-
prehension of the physical phenomenon. In the case of
high numerical aperture lenses, and a relatively large ob-
ject compared to the spatial resolution, the optical trans-
fer function (OTF) can be neglected [5]. Consequently, in
order to simplify the analysis and the calculations we con-
sider an infinite pupil function describing the optical sys-
tem. We show, both analytically and numerically, that the
signal obtained at the exit of the set-up is approximately
linear with respect to the induced nonlinear phase, as long
as the value of this phase is lower than 1 radian. We pro-
vide a simple, linear expression relating the signal to the
induced nonlinear phase shift. This allows an easy experi-
mental determination of n2 at low incident intensities. We
also give the optimized parameters for such a system in
order to increase the sensitivity of the measurement.

Finally, we consider high values of the nonlinear de-
phasing induced in the nonlinear material. At high inten-
sities, needed to produce highly nonlinear phase shifts,
other nonlinear phenomena could be induced in the sam-
ple. In what follows, nonlinear effects of order higher than
three are neglected and stimulated scatterings (Brillouin,
Raman, and Rayleigh) are not taken into account. It is
assumed that the power remains under the self-focusing
threshold. Moreover, thermo-optical effects are not signif-
icant when one is using ultrashort pulses in the picosecond
range. Admittedly, it is not always possible to visualize the
phase contrast effect independently from the aforemen-
tioned phenomena. However, the theoretical knowledge of
the evolution of the phase contrast makes possible, in a
first step, to approach the final behavior of the sample
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Fig. 1. (a) Schematic of a 4f coherent system imager using a phase object (PO). The nonlinear material (NL) is placed in the
Fourier plane between lenses L1 and L2. A neutral filter (tf) is located after L2. Intensities are measured relative to a reference
signal obtained by using beam splitters BS1 and BS2, mirrors M1 and M2 and lens L3. (b) Schematic of the phase object (PO)
used at the entry of the set-up.

under study. In particular for high nonlinear dephasing,
we will show that a positive contrast (negative contrast)
is not always induced by a positive n2 (negative n2).

2 Analytical calculations

It is assumed that Fourier optics is sufficient to describe
image formation using a 4f system [5]) as shown in Fig-
ure 1a. At the entrance of the set-up a circular phase ob-
ject of radius Lp, characterized by a uniform phase shift
ϕL, is centered inside an aperture of radius Ra where
Ra > Lp (see Fig. 1b). A nonlinear sample considered
as ‘thin’ is located at the focal plane of lens L1.

2.1 Field amplitude in the focal plane of lens L1

Let us consider an incident unit-amplitude linearly polar-
ized monochromatic plane wave at normal incidence at the
entry of the object. The amplitude transmittance function
t, characterizing the object, can be expressed with respect
to the radial coordinate r:

t(r) = circ(r/Ra) + [exp(jϕL) − 1]circ(r/Lp), (1)

where circ(x) stands for the circ function (circ(x) = 1 if
x < 1 and circ(x) = 0 otherwise). The field amplitude in
focal plane is proportional to t̃, the spatial Fourier trans-
form of t. A simple analytical calculation using the Bessel
generating function shows that (see e.g. Ref. [5]):

t̃(u) = πR2
a

(
2J1(2πuRa)

2πuRa

+ρ2[exp(jϕL) − 1]
2J1(2πuρRa)

2πuρRa

)
, (2)

where u = r/(λf1) is the radial spatial frequency with
f1 denoting the focal length of L1 and ρ = Lp/Ra is a
geometrical factor characterizing the object. The intensity

Ĩ(u) of the laser beam in the focal plane at the entry
of the nonlinear sample is proportional to ζ(2πuRa) =
t̃(u)t̃(u)∗/(π2R4

a), where:

ζ(v) =
(

2J1(v)
v

)2

− 4ρ2

(
2J1(v)

v
− 2J1(vρ)

vρ
ρ2

)

× 2J1(vρ)
vρ

sin2 ϕL

2
. (3)

Moreover without any phase object (ρ = 0), the peak-
intensity at the center of the beam is equal to I0. There-
fore, Ĩ(u) = I0ζ(2πuRa).

The nonlinear sample placed at the Fourier plane is
characterized by: α, the linear absorption; β, the nonlinear
absorption; n2, the nonlinear index coefficient. According
to reference [6], the nonlinear phase shift at the exit face
of this “thin” sample is given by

ϕNL(u) =
kn2

β
ln

(
1 + βLeff Ĩ(u)

)
, (4)

where k = 2π/λ is the modulus of the wave vector, and
Leff = (1 − exp(−αL))/α (L denoting the thickness of
the material). We define ϕ0 = kn2Leff I0 as the nonlinear
phase shift at the center of the beam (r = 0) and without
PO (ρ = 0). By introducing a dimensionless parameter
q0 = βLeff I0, we obtain:

ϕNL(u) = ϕ0Z(2πuRa), (5)

where:

Z(v) =
ln (1 + q0ζ(v))

q0
. (6)

For small values of q0, Z(v) ≈ ζ(v) because ζ(v) is a
bounded function.

As it can be derived from reference [6], the complex
distribution of the field amplitude at the output of the
specimen is proportional to:

SL(u) = t̃(u)
e−αL/2

√
1 + q0

ejϕNL(u). (7)
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2.2 Intensity in the image plane

In the image plane S̃L(r), the field amplitude after
the second lens L2 (see Fig. 1a), is given by another
Fourier transform. Using the property of Bessel functions
y

∫ ∞
0 J0(x)J1(xy)dx = circ (1/ |y|), we get:

S̃L(r) =
e−αL/2

√
1 + q0

{
circ(r/Ra) + a

(ρ)
0 (r)

+
(
ejϕL − 1

) (
circ(r/Lp) + a

(ρ)
1

)}
, (8)

where the functions a
(ρ)
i (r) (i = 0 or 1) are defined by:

a
(ρ)
i (r) =

∞∫
0

[exp (jϕ0Z(v/bi, ρ, ϕL)) − 1]

× J0 (vr/(Rabi))J1(v) dv, (9)

with b0 = 1 and b1 = ρ. Moreover, equation (8) may be
written in a more compact form:

S̃L(r) =
e−αL/2

√
1 + q0

{
t(r) + a

(ρ)
0 (r) +

(
ejϕL − 1

)
a
(ρ)
1 (r)

}
.

(10)
The complex integrals a

(ρ)
i (r) can be decomposed into

two real integrals, c
(ρ)
i (r) and s

(ρ)
i (r), with a

(ρ)
i (r) =

c
(ρ)
i (r) + js

(ρ)
i (r). Calculations of these r-dependent in-

tegrals (hereafter simply designated as ci and si respec-
tively) are direct and the intensities I(r) = S̃L(r)S̃L(r)∗
in the image plane can be numerically evaluated for any
values of r, ρ, ϕ0 and ϕL. Defining a ‘normalized’ intensity
I(ρ)(r) as the ratio I(r)

√
1 + q0/[I0 exp(−αL)], we obtain:

I(ρ)(r) =

circ(r/Ra)
[
1 + 2c0 − 2

(
2c1 sin2 ϕL

2
+ s1 sin ϕL

)]

+ circ(r/Lp)
[
2s0 sinϕL − 4 (c0 − 2c1) sin2 ϕL

2

]

+ c2
0 + s2

0 + 4
(
c2
1 + s2

1 − c1c0 − s1s0

)
sin2 ϕL

2
− 2 (c0s1 − s0c1) sin ϕL. (11)

Particularly for ϕL = π/2, equation (11) reduces to:

I(ρ)(r) = circ(r/Ra) (1 + 2c0 − 2c1 − 2s1)
+ 2circ(r/Lp) [s0 − c0 + 2c1]

+ c2
0 + s2

0 + 2 [c1 (c1 − c0 + s0)
+s1 (s1 − s0 − c0)] . (12)

3 Results and discussion

In Figure 2, we present a comparison between the numer-
ically simulated normalized intensity given in reference [1]
and the intensity obtained here from equation (12) for
ρ = Lp/Ra = 0.345 and ϕ0 = 0.91 rad. A comparison

Fig. 2. Comparison of numerical simulations reported in ref-
erence [1] (right side of the profile) and analytical calculations
(left side). Profile (1): top-hat beam image at the output of
the 4f set-up after transmission through a lossless Kerr ma-
terial inducing a nonlinear phase shift ϕ0 = 0.91 rad (dashed
line); profile (2): top-hat beam image when a PO is centered
at the entry of the set-up (solid line). In this figure, the phase
of the PO is ϕL = π/2 and its geometrical parameter is
Lp/Ra = 0.345.

Fig. 3. Profile (1): the same as in Figure 2; profile (3): the
same as profile (2) of Figure 2 but for a negative nonlinear
phase shift ϕ0 = −0.91 rad.

for ρ = 0.345 and ϕ0 = −0.91 rad is also presented in
Figure 3. Because the optical transfer function (OTF) of
the imaging system is not considered here, the ‘ringing
effect’ is absent [5]. On the contrary, the numerical simu-
lations of reference [1] take into account the OTF which
induces signal oscillations at the border of the circular ob-
ject. Nevertheless, Figures 2 and 3 show that our analyti-
cal calculations are in good agreement with the numerical
and experimental results shown in reference [1] when one
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considers the average of the signal obtained at the right-
hand side of these figures. Finally note that in Figure 2
the phase contrast ∆T is given by:

∆T =
〈
I(ρ)(r)

〉
r∈[0,LP ]

−
〈
I(ρ)(r)

〉
r∈[LP ,Ra]

, (13)

where the brackets 〈. . . 〉 stand for the average over area.
This definition, already used in reference [1], corresponds
to the difference between the mean values of the diffracted
intensity inside the phase plate and the intensity outside.

3.1 First-order approximation (ϕ0 < 1 rad)

In this part, we assume ϕ0 < 1 rad. In this case and if there
is no absorption, the phase contrast may be approximated
by considering the conservation of the energy in the images
given with and without PO (the diffracted energy inside
the PO is deflected from outside). A rough but simple
calculation given in Appendix A reduces equation (13) to:

∆T ≈ I(ρ)(0) − 1

1 −
(

Lp

Ra

)2 . (14)

Besides for lossless Kerr medium such as CS2 where q0 ≈
0, the real functions ci and si can be easily expanded in

Taylor series. Thus, we get si = ϕ0

∞∑
n=0

(−1)n
ϕ2n

0 Υ
(2n+1)
i

and ci = −ϕ2
0

∞∑
n=0

(−1)nϕ2n
0 Υ

(2n+2)
i , with:

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

Υ
(N)
i (r) = 22N

N∑
q=0

1
q!

(
2 sin ϕL

2

)2(N−q)

×
2(N−q)∑
p=N−q

(−1)pK
(N)
p+i(r)

(2(N−q)−p)!(p−(N−q))!

K(N)
p (r) = ρp

∞∫
0

J1(v)2N+1−pJ1(vρ)pJ0(vr/Ra)v−2Ndv.

(15)

Taking into account that lim
r→∞K(N)

p (r) = 0 and

lim
N→∞

K(N)
p (0) = 0, these expansions show that for a small

nonlinear phase shift ϕ0, si and ci are roughly propor-
tional to ϕ0 and ϕ2

0, respectively. At first approximation,
si(r) ≈ ϕ0Υ

(1)
i (r) and we get:

si(r) ≈ 4ϕ0

(
K(1)

i (r) − 4
[
K(1)

i+1(r) − K(1)
i+2(r)

]
sin2 ϕL

2

)
.

(16)
Moreover considering only the first-order terms in ϕ0,
equation (11) reduces to:

I(ρ)(r) ≈ 2s0(r) sin ϕLcirc(r/Lp)
+ (1 − 2s1(r) sin ϕL) circ(r/Ra). (17)

Using equations (14–17), we thus obtain a linear relation
between ∆T and the algebraic value ϕ0:

∆T = Sϕ0 (18)

Fig. 4. PO phase shifts ϕLM (Lp/Ra) giving the best phase
contrast in the case of a first-order approximation and for every
possible value of the geometric parameter Lp/Ra.

Fig. 5. Sensitivity S versus the geometrical factor Lp/Ra cal-
culated using only first-order terms and an approximation of
the sensitivity formula for (i) a phase shift of the phase object
ϕL = ϕLM (Lp/Ra) providing the best phase contrast (solid
line); (ii) ϕL = π/2 (dashed line).

where the sensitivity S defined by the ratio of the contrast
to the nonlinear phase shift can be approximated by:

S ≈ 16 sinϕL

1 −
(

Lp

Ra

)2

(
Λ0 − Λ1 − 4 [Λ1 − 2Λ2 + Λ3] sin2 ϕL

2

)

(19)
with:

Λp =
(

Lp

Ra

)p ∫ ∞

0

J1

(
vLp

Ra

)p
J1(v)3−p

v2
dv. (20)

Finally, equations (18, 19) give simple expressions relat-
ing the obtained signal to the induced nonlinear phase
shift. This allows an easy experimental determination of
the nonlinear index coefficient of the sample under study.
The sensitivity reaches a maximum when ∂S/∂ϕL = 0
for a phase shift ϕLM which depends on ρ = Lp/Ra. This
optimal function ϕLM (ρ) matches the following relation:

2 +
Λ0 − Λ1

Λ1 − 2Λ2 + Λ3
≈ 8 sin2 ϕLM

2
+

2
cosϕLM

. (21)

In Figure 4, we show the variation of the function
2ϕLM (ρ)/π whereas Figure 5 provides the approximated
sensitivity as calculated by equation (19) for the two cases:
(i) ϕL = ϕLM (ρ); (ii) ϕL = π/2. One can see from Table 1
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Table 1. Optimal values of the PO phase shifts and corre-
sponding phase contrasts ∆T = Sϕ0 (for ϕ0 = 0.182 rad) cal-
culated by using a first-order approximation (this work) and
those calculated numerically as in reference [1].

ρ =
Lp

Ra
ϕL/π ϕL/π ∆Tmax ∆Tmax

(this work) Ref. [1] (this work) Ref. [1]
0.083 0.49 0.5 0.21 0.21
0.345 0.38 0.39 0.15 0.16
0.690 0.31 0.31 0.11 0.11

that the results obtained in these figures are in good agree-
ment with the numerical results given in reference [1] for
a ‘small’ ϕ0 (ϕ0 = 0.182 rad) and the three values of the
geometrical parameter ρ = Lp/Ra. From Figure 4, it ap-
pears that the sensitivity is maximum for π/3 < ϕL < π/2
depending on ρ. Moreover, Figure 5 shows that for small
values of ρ (i.e., small radii Lp) the signal is higher and the
contrast is not significantly affected by the use of a phase
object characterized by ϕL = π/2 instead of ϕLM (ρ), the
optimal value. Therefore experimentally, it is preferable to
choose ρ < 0.35 and ϕL ≈ π/2. Note that in Figures 4 and
5, the results obtained in the limit cases for ρ → 0 and
ρ → 1 are not shown. We should remember that the OTF
of the system was not considered in our analytical calcula-
tions. This may introduce errors due to ringing effects at
the limit of very small objects or apertures and the analyt-
ical results are not valid because the signal obtained from
the diffraction at the border is of the same magnitude as
that obtained from the nonlinear dephasing.

3.2 Contrast in the general case

In what follows, we consider a high nonlinear phase shift
ϕ0. The phase contrast ∆T defined by equation (13) can
be computed using the analytical equations (9) and (11) or
(12). In Figures 6 and 7, we report ∆T versus ϕ0 for |ϕ0| <
1 rad and |ϕ0| < 25 rad, respectively. In order to make
a comparison with the numerical results of reference [1],
we chose for these figures, ρ = 0.345 (Lp = 0.5 mm and
Ra = 1.45 mm) and ϕL = π/2.

Figure 6 confirms that ∆T varies, approximately lin-
ear with ϕ0 as mentioned in reference [1]. The solution
is close to the first-order approximation for both n2 > 0
and n2 < 0 (note that higher-order corrections are posi-
tive in both cases). Moreover the sensitivity represented
by the slope of the curve is in good agreement with the
one computed in reference [1] and with the approximation
presented in Figure 5 for ϕL = π/2. At least as long as
ϕ0 < 1 rad, the 4f system using a phase object permits
a measurement of the algebraic value of n2. The analy-
sis becomes more complex when ϕ0 > 1 rad as shown in
Figure 7. The contrast ∆T does not vary linearly with ϕ0

anymore. Considering the case when n2 < 0, ∆T reaches
its negative minimum for |ϕ0| =

∣∣ϕmin
0

∣∣. For larger val-
ues of |ϕ0|, it can even be positive. In Figure 7 is shown
the evolution of the contrast versus the nonlinear dephas-
ing for the parameters ρ = 0.345 and ϕL = π/2 giving

Fig. 6. Phase contrast ∆T versus |ϕ0| in the case of low non-
linear dephasing (|ϕ0| < 1 rad) for n2 > 0 and n2 < 0 with
ρ = Lp/Ra = 0.345 and ϕL = π/2. All-order calculations (solid
lines) and first-order terms (dashed lines) are shown together.

Fig. 7. Phase contrast ∆T versus |ϕ0| for |ϕ0| < 50 rad, ρ =
0.345 and ϕL = π/2. The solid line stands for n2 > 0; the
dashed line for n2 < 0.

∣∣ϕmin
0

∣∣ = 1.8 rad. One can see in this figure the change
of the sign of ∆T at 3.8 rad. In the case when n2 > 0,
the function ∆T (ϕ0) reaches its maximum for ϕ0 = ϕmax

0
at few radians (4.3 rad in Fig. 7) and then decreases. For
both cases beyond |ϕ0| ≈ 7 rad, ∆T oscillates around a
saturation value (approximately 1 in Fig. 7). In Figure 8,
values of

∣∣ϕmin
0

∣∣ and ϕmax
0 are provided as a function of

the geometrical factor ρ = Lp/Ra for ϕL = π/2. It is im-
portant to note that for ρ higher than 0.7,

∣∣ϕmin
0

∣∣ > ϕmax
0

and the saturation value of the contrast becomes negative
in both cases when n2 < 0 and n2 > 0. This behavior
can be a source of error in the measurement procedure
using phase objects if we simply attribute the sign of the
contrast to the sign of the nonlinear index.
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Fig. 8. Values of the first zero of the ϕ0-derivative of the phase
contrast ∆T , versus ρ for ϕL = π/2: the solid line stands for
ϕmax

0 (n2 > 0); the dashed lines for
∣∣ϕmin

0

∣∣ (n2 < 0).

Mathematically, the evolution of ∆T can be easily un-
derstood owing to equations (9) and (11) and to the ex-
pansion described by equations (15). More particularly in
equation (11), terms which are not in factor of the circ
functions are in powers of ϕ0 higher than one. They can-
not be neglected for high values of |ϕ0| whereas they cor-
respond to intensities diffracted in the entire image plane
and not only in the circular areas limited by the circ func-
tions. Physically, this means that higher the value of |ϕ0|,
greater is the part of the energy diffracted outside the
image (aperture + PO), thus inducing saturation of the
phase contrast. Experimentally, it forbids any measure-
ment of the phase contrast in order to determine n2 for
|ϕ0| >

∣∣ϕmin
0

∣∣ if n2 < 0 and for ϕ0 > ϕmax
0 if n2 > 0.

4 Conclusion

We have considered a 4f system in presence of a phase
object in order to measure the nonlinear index coefficient
of a nonlinear material placed in the Fourier plane. We ob-
tained the optimized parameters to increase the sensitivity
of the measurement. For low intensities, we showed analyt-
ically that a linear relation exists between the phase con-
trast (the signal) and the induced nonlinear phase shift.
In this case, a simple first-order relation allows an easy ex-
perimental determination of the sensitivity as well as the
nonlinear index. We also derived the analytical solution
giving the phase contrast for high nonlinear phase shifts.

This study shows a limit of using this technique: the satu-
ration of the phase contrast. In particular, it shows what
could be a possible source of error in the measurement
procedure using phase objects: the sign of the contrast
cannot be attributed to the sign of the nonlinear index
as simply as it was reported up to now for low nonlinear
phase shifts.

Appendix A

For small values of the nonlinear phase shift, the signal
I(r) in the image plane can be roughly described in terms
of circ functions as:

I(r) = Iacirc(r/Ra) + (Ip − Ia)circ(r/Lp), (A.1)

where Ia stands for the image of the aperture at the entry
of the set-up and Ip is the image of the phase object.
Assuming the conservation of the energy with and without
the phase object, we get:

IaπR2
a + (Ip − Ia)πL2

p = I0πR2
a, (A.2)

where I0 is the signal obtained without the phase object.
For a normalized signal (I0 = 1), we obtain:

Ip − Ia =
Ip − 1

1 −
(

Lp

Ra

)2 . (A.3)

This equation defines the phase contrast and is similar to
equation (14).
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